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The quantum mechanics of the H6non-Heiles potential is analyzed using an 
adiabatic representation in polar coordinates and exploiting the asymptotic 
separability of the radius. The procedure allows us to establish a correlation 
between quasiperiodic and chaotic classical behavior, and regular or irregular 
quantum modes: It is found that irregularity can be attributed to nonadiabatic 
effects at the potential ridge. The resonance widths for this prototypic system 
of coupled oscillators are studied with reference to the lifetime in the quantum 
theory of unimolecular decay. The near separability of the radius of  the polar 
coordinate representation is exploited for discussing energy dependence and 
symmetry effects on the widths. The relevance of this analysis for the charac- 
terization of quantum mechanical behavior near an elliptic umbilic catastrophe 
point is also briefly considered. 
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1. Introduction 

Basic to several recent investigations of nonseparability in celestial mechanics is 
a potential known as H6non-Heiles '  [1], which is obtained by adding a cubic 
term to the isotropic bidimensional oscillator: (x3) 

v(x,y,A)=~(x2+y2)+a xy2--~ , (1) 
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the strength of coupling being measured by the parameter A. Studies of bifurcation 
for the propped cantilever [2] and general Hamiltonian dynamics [3] use similar 
potential functions; in chemical physics, this potential is of interest for 
intramolecular vibrational relaxation [4]. For the classical Hrnon-Heiles '  oscil- 
lator, quasiperiodic and chaotic trajectories have been characterized. Correspond- 
ingly, it is pointed out in this paper that quantum mechanical states can be 
classified as regular or irregular [5], the origin for irregularity being associated 
with a nonadiabatic coupling localized along ridges in the potential [6]. 

Features of the potential (1) and of the present analysis are sketched in Fig. 1. 

The adiabatic analysis, as presented in Sect. 2 [6], is most transparent when the 
potential is written in polar [7] coordinates, 

V(p, O) =�89 2-Ap3 c o s  30 
3 ' (2 )  

where x = p cos 0, y = p sin 0 have been substituted in (1). This potential has C3v 
symmetry, with valley bottoms for 0=(0,2~r/3,47r/3)  and ridges for 0=  
(~r/3, m 5~r/3) [8]. Valley bottoms attain a maximum value of (612) -1 high when 
p = )t-I (the saddles of the surface), and then go to minus infinity: all the states 
quantum mechanically supported by this potential energy surface are actually 
metastable. Following Miller [9, 10], the energy positions and widths of these 

O tr ~1~ 
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Fig. 1. a Schematic diagram of  equipotential curves for the Hrnon-Hei les  model of  anharmonical ly 
coupled oscillators (Eqs. (1), (2)); b energy levels supported by a threefold pendular  type potential 
as obtained from the Hrnon-Hei les  potential at fixed p. The min imum Vo (valley bottom) and the 
max imum V M (ridge) of  the p-fixed potential are indicated; e V M and V 0 as a function of p, together 
with typical behaviour of  adiabatic energy levels e 
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quantum mechanical resonances have been considered as a model for uni- 
molecular dissociation reactions [9-11 ]. The semiclassical analysis based on short 
wave asymptotic separability [6] still needs to be solved for adiabatic bound 
states at fixed p. As shown in Sect. 3 this problem is essentially that of the quantum 
mechanics of the pendulum [ 12], described by Mathieu eigenvalues and functions; 
symmetry classifications and general qualitative features follow easily from this 
analysis. Its application to the characterization of resonance widths is considered 
in Sect. 4, where we use the approach recently introduced for similar problems 
in unimolecular reaction theory [13]. In an Appendix we conclude with some 
remarks on the canonical nature of this problem and the implications from a 
catastrophe theory viewpoint. 

2. Semiclassical analysis in the adiabatic representation 

2.1. Asymptotic separability and its local breakdown 

Because of the masses and the interactions involved, molecular behavior is 
typically a problem for semiclassical mechanics: quantum effects are too important 
to be neglected altogether, but Planck's constant is definitely so small a parameter 
that appropriate asymptotic techniques can be exploited effectively. The paradig- 
matic example is the WKB (Wentzel, Kramers, Brillouin) approach; it is useful 
both for bound states and for scattering [14] whenever the problem is essentially 
one-dimensional, and in the following discussion we will base many of our 
considerations on it. 
The extension of the asymptotic approach [ 15] to multidimensional nonseparable 
systems is not so straightforward; EBK (Einstein, Brillouin, Keller) quantization 
acts only on classical quasiperiodic trajectories, thus yielding only part of the 
spectrum, and cannot be generalized to scattering states. Among the techniques 
developed for dealing explicitly with inelastic scattering and reactions, a generaliz- 
ation of the Born-Oppenheimer separation of nuclear and electronic motion has 
recently proved to be very successful in atomic [16] and molecular [17] physics. 
It involves the search for a nearly separable variable, in terms of which the time 
independent Schrrdinger equation reduces to an infinite set of coupled second- 
order ordinary differential equations. As will be shown below, besides offering 
an effective computational scheme, the procedure may be implemented semiclassi- 
cally, and each step is amenable to the qualitative interpretation that is needed 
for deepening our insight into complicated quantum systems. 
Regular, quasiperiodic behavior of a quantum system is definitely associated with 
at least some degree of separability of the equations of motion. (How the converse, 
i.e., "chaos" whatever its definition may be, can be associated with nonseparabil- 
ity, is a matter of current research [ 18]). Separability, on the other hand, is always 
a manifestation of some symmetry. This, in quantum mechanics, corresponds to 
the existence of operators commuting with the Hamiltonian, and leads to the 
possibility of defining good quantum numbers. Although for intrinsically non- 
separable problems separation cannot be carried out exactly (globally), it is 
nonetheless possible to find important examples where quasiseparability 
(approximately commuting operators, nearly good quantum numbers) can be 
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obtained. In the description of diatomic molecules, for example, electronic, 
vibrational and rotational modes are progressively considered separately follow- 
ing a well established hierarchy, and this allows one to arrange modes according 
to characteristic frequencies. The underlying idea is that if a mode is much slower 
than others, it can be considered as frozen while studying the fast ones. Thus, 
in the familiar Born-Oppenheimer  separation, internuclear distances are slow 
coordinates with respect to electron-nucleus and electron-electron ones. The 
whole of  quantum chemistry capitalizes on this idea. 

A key observation for fruitful generalization is that, to achieve approximate 
separation, one employs, more or less rigorously, asymptotic expansions with 
respect to some parameters (mass ratios, frequency ratios). In the present investi- 
gations, we start from the consideration that, for problems of definite chemical 
and physical interest, it is often possible to find some representation which allows 
us to obtain an approximate separation (at least locally) by expansions which 
are asymptotic in Planck's constant, treated as a small parameter. This is a natural 
choice, since it corresponds to what is commonly understood as the short wave, 
or semiclassical, regime. Although these approximately separated representations 
will fail somewhere, it is surmised [6] that the localization of failure may lead 
to the identification of a source of irregular behavior for quantum modes, 
suggesting therefore that the search for special asymptotic techniques for dealing 
with local nonseparability is particularly promising. 

2.2. Adiabatic and diabatic representations 

In general, within the framework of time independent nonrelativistic quantum 
mechanics, a Born-Oppenheimer  type of separation can be attempted by introduc- 
ing a suitable coordinate system. Suppose the problem to be N-dimensional: in 
typical applications [17], one variable p is defined, in most cases as a radius of 
the N-hypersphere,  and the problem is parametrized by n = N -  1 angles, collec- 
tively indicated by f t , .  The Schrodinger equation can then be transformed into 
a coupled set of ordinary differential equations with the diagonal elements being 
e ~ (p), the spectrum o f an ( N - 1 ) dimensional problem parametrically depending 
on p, with corresponding wavefunctions ~b~,(p, f~n). 

When the total wavefunction is expanded in an adiabatic basis set 

�9 It(p, I ) . )  = p - " / = ~ ( p ,  D. . )F~(p) ,  (13) 

the hyperradial adiabatic functions F a are to be found as the solutions, with 
proper boundary conditions, of the infinite set of coupled linear differential 
equations [19] 

d E1}F~(p)=O" 

Here, the matrix of adiabatic eigenfunctions, ~a  (p, l l~),  and the diagonal matrix 
of adiabatic potential energy curves, e~(p), are solutions of the eigenvalue 
problem 

2 n2 n 
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where the operator A 2 is the angular part of the Laplacian of the ( n + l ) -  
dimensional space, and V(p, ~,,) is the interaction potential. The infinite sets 
are meant to be solved after proper truncation. The mass parameter /z ,  which 
appears in Eq. (4), depends on the definition of  the hyperradius p. 

The adiabatic approximation consists of  neglecting all coupling in Eq. (4), i.e. 
in neglecting the elements of  the antisymmetric matrix P(p), 

(~,,I-~p~'~,)=(e~,-e,,,)-l(dP~ ~cb~,)=-P,/,,, (6) p ~ , =  a a 

the brackets denoting integration over hyperangles l)n, and use has been made 
of a form of  the so called the Hellmann-Feynman theorem. Some authors [20] 
add to e~ the diagonal terms of a matrix Q(p) given by Q = - p 2 + d P / d p .  The 
present scheme would then be referred to as the Born-Oppenheimer approxima- 
tion. Actually, it can be shown by variational theory that for ground states this 
approximation gives a lower limit, while the Q-corrected one gives an upper 
limit; however, the latter approximation becomes ill-behaved when nonadiabatic 
coupling is important. A scheme for further corrections to the adiabatic approxi- 
mation has been developed [19]. 

We note that diabatic representations [12] correspond to alternative expansions 
to those in Eq. (3). 

aIC(p, 1~,) = p-n/e~d ( l'~n)Fa (p ) (7) 

By comparison with Eq. (3), Eq. (7) implies the definition of an orthogonal 
matrix T(p), 

~a(p,~,,)=~a(l~,,)T(p) and F a ( p ) =  T(p)Fa(p), 
which can be obtained once Eq. (5) has been solved, by requiring that the 
orthogonal matrix T(p) satisfy the system 

d P(p) = T(p) ~p T(p). (8) 

As a result, first derivatives disappear from Eq. (4), which becomes 

d 2 

the coupling being transferred from the kinetic term in Eq. (4) to the potential, 
which now is a nondiagonal diabatic matrix related to ~(p) by 

V(p) = r(p)~(p)~'(p). (10) 
This prescription is not unique, since any p-independent rotation of  T is also a 
solution: boundary conditions have to be imposed on Eq. (8). A particular 
advantage of  our choice of  the p coordinate is that a convenient analytical diabatic 
expansion basis may be given by the eigenfunctions of A 2 in Eq. (5), i.e. by the 
(hyperspherical) harmonics [17]. 

In the following, we will exploit properties of the adiabatic formulation. At a 
given total energy E, one has to introduce the proper (scattering or bound states) 
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boundary conditions and solve for the unknown channel functions Fa(p). The 
e and P matrices, which are obtained by solving an N - 1 dimensional problem, 
are in principle of  infinite dimension. The success of the procedure from the 
point of view of its use in practical calculations is determined by its rate of 
convergence upon truncation. 

The above manipulation of the Schr~dinger equation is particularly useful for a 
discussion of properties of systems from the point of view of asymptotic methods. 
It is immediately apparent that whenever elements of P are small, since h2/21~ 
is a small parameter in molecular dynamics and chemical kinetics, Eq. (4) 
adiabatically decouples into one-dimensional Schr6dinger problems for the 
effective potentials e~(p). In turn, these one-dimensional equations can be 
analyzed by the Liouville-Green WKB technique. This requires special care 
whenever e ~(p) = E (turning points), but may be effectively solved by the method 
of  comparison equations (see Appendix). Therefore a proper choice of coordin- 
ates may lead to wide regions of  p space where this decoupling is very effective; 
in these cases it may be straightforward to compute bound or resonance states 
and scattering properties semiclassically. 

When this adiabatic decoupling is effective, wave functions are given by a single 
term of expansion (3), and approximate quantum numbers can be assigned. 
However strictly the class of  regular, quasiperiodic modes are defined in quantum 
mechanics, these states definitely appear to belong to it! As will be illustrated 
below, the success of the procedure critically depends on how appropriate the 
definition of the p coordinate is, with p being chosen to localize any breakdown 
of approximate separability as much as possible. This breakdown is measured 
by the P matrix, and therefore a study of its analytical structure is an important 
step in the present program. In fact, Eq. (4) shows that around those poles of 
the P matrix elements that are sufficiently close to the real p axis, their neglect 
is not warranted however small h2/2/.~ becomes. In the following, therefore, we 
will sketch examples where these features of P matrix have been characterized. 
Around these features adiabatic conditions fail, and several terms of  comparable 
magnitude may contribute to Eq. (3), leading to departure from regular behavior. 

3. Regular and irregular quantum modes of H~non-Heiles coupled oscillators 

3.1. Reduction to Mathieu equation 

The quantum mechanics for a particle in a H6non-Heiles potential V(p, O) (Eq. 
2) is described by the Schr~dinger equation, which in proper units [4] reads, at 
the energy E, 

The adiabatic expansion of  Eq. (3) is now 

* ( p ,  O)= p-1/2~ c~(p, 0)F~(p),  (12) 
v 
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where the functions ~b~(p, 0) are eigensolutions at fixed p values to the equation 

--2 + V(p, O) ~b,,(p, 19) = e~,(p)~,,(p,/9). (13) 

The choice of  the polar coordinate system for this problem is particularly con- 
venient since the cyclic boundary conditions mean that Eq. (13) yields a discrete 
spectrum. This advantage also encourages the use of polar coordinates for spaces 
of higher dimension [17]. 

The eigenvalue equation, Eq. (13), is essentially a Mathieu equation, which in 
quantum mechanics describes the properties of a pendular motion. Therefore we 
will summarize its properties in the next section, surmising that the quantum 
pendulum is the prototypic physical model for mode transitions, and that the 
Mathieu equation, its eigenvalues, and its eigenfunctions, provide the appropriate 
mathematical apparatus for the description of mode transitions. 

3.2. Transition between modes: semiclassical analysis of the quantum pendulum 

Nonadiabatic effects are often localized where the actual character of a system 
changes drastically. So, for example, when the interaction between two atoms is 
considered as a function of the internuclear distance R, it is found that the 
transition between the typical behavior of separated atoms and that of  a diatomic 
molecule is often localized around sharp maxima in elements of a P(R) matrix 
[19]. These maxima correspond to poles near the real R axis in a proper  analytic 
continuation of P(R), and mark the breakdown of the Born-Oppenheimer 
separation. 

Several examples can be put forward in order to show that transitions between 
modes, due to a local breakdown of adiabaticity, typically take place at well 
defined characteristic features of the potential. For problems involVing more than 
two bodies, several investigations have identified the hyperradial variable/9 as a 
good candidate for near separability [16, 17]. Low values of p correspond to 
closeness of all particles, and the various possible rearrangement channels corre- 
spond to large p. Consider the simplified situation where three particles are 
constrained to be on a line. A rearrangement process, such as a chemical reaction, 
can be described [21] in a time independent picture as the transition between 
two types of modes, with the transition corresponding to an intermediate complex 
(transition state) which may dissociate into channels corresponding to reactants 
and products; the transition can be described adiabatically, nonadiabaticity being 
important only along a line in the potential energy surface (the ridge) which 
separates the valleys of reactants and products. Implementing these ideas semi- 
classically, it has been possible to obtain not only qualitative descriptions, but 
also quantitative results for resonance positions and widths, and for interference 
effects in the probability for reactive collisions. A classical study of these problems 
[22] points to a connection between chaotic behavior and temporary trapping in 
the transition state; again, a connection between local nonseparability and 
irregular modes is emerging. 
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As stressed above, the basic physics and the related mathematics associated with 
mode transitions are illustrated by the pendulum, whose classical mechanics is 
described in many textbooks and reviews [23]. The two modes are designated 
vibrating or librating, and rotating or precessing at energies respectively lower 
and higher than the maximum in the potential VM. In the context of recent 
investigations of highly excited molecules, the two modes would correspond for 
example to normal and local vibrations, respectively. The two modes are sharply 
separated by a trajectory (the separatrix) that has an energy corresponding to 
the maximum in the potential (the ridge in our applications). As is often the 
case, the transition between modes is smoother in quantum mechanics [24]. 

Since (see Sect. 2.1) the pendulum problem figures in our treatment of H6non- 
Heiles potential, we sketch som~ of its features. 

Mathematically, the classical problem is completely soluble in terms of Jacobian 
elliptic functions and the quantum problem in terms of Mathieu, or elliptical 
cylinder, functions. The limiting behavior of quantum solutions for the two modes 
are very well known, and the Xliterature contains extensive discussions of this 
behaviour. Both can be handled by perturbation techniques [25]; however these 
fail around the ridge, where a connection problem arises. Therefore, a discussion 
of  the transition regime is of specific interest, and can be carried out by the simple 
uniform asymptotic technique sk~etched in [5]. 

The Schr6dinger equation for the~physical pendulum [23], 

2m12 dga~ + VM cos ~b ~ ( ~ b )  = e ~ ( ~ b )  (14) 

(where m is the mass and l the length, and e. the energy for the state ~ . ) ,  is 
transformed into the standard Mathieu equation, 

d 2 
da 2 Y~ (a )  + (A~ - 2 q  cos 2a)  Y~ (~) = 0, (15) 

by defining a new angle a = ~b/2, the parameter q = 4rnl 2 V M/h  2 and the eigenvalue 
A~ = 8ml2e~/ h 2. 

Eigenvalues and eigenfunctions for this equation can be generated by using 
expansions in Fourier series (Hill's method) [26], being the complex exponential 
harmonics on a circle [17]: 

oo 

Y~(a)=  Z t2r , , exp[ i ( /3+2r)a]  (16) 
r = - - o o  

(where /3 depends on boundary conditions dictated by symmetry--see below). 
Insertion of  this expansion in Eq. (15) leads to a secular equation, giving A~ as 
eigenvalues, and the coefficients t2r.~ as elements of eigenvectors. The present 
secular problem has been efficiently solved by Jacobi diagonalization. 

For the pendulum, the boundary conditions on Eq. (15) require the solutions in 
a to have ~- as a period, and one obtains (as a function of q) even and odd 
eigenvalues, usually denoted a2n and b2n respectively. Equation (15), as the 
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simplest case of a Hill equation, may represent a zero-order approach to problems 
where a potential is expanded in a Fourier series. In general, therefore, other 
periodic boundary conditions are of interest. A Floquet type of  analysis [26] 
shows that for N-fold symmetric potentials (where N is even), solutions with 
period 21r are also acceptable. Corresponding eigenvalues are denoted a2n+l and 
b2,+~ for the even and odd cases respectively. In the language of group theory, 
only states with the same periodicity and parity will belong to the same irreducible 
representation of the symmetry group of the potential. 

For general N, doubly degenerate solutions also appear, and their eigenvalues 
are labelled by 2n +/3, where/3 is a rational fraction less than 2:/3 = 2 K / N ,  and 
K = 1 , . . . ,  -1 .  They induce irreducible representations of type e. It is convenient 
to extend the definition of K (and/3) to the nondegenerate cases, corresponding 
to K =0  (and/3 =0)  for 2n states (~" periodicity) and K = N / 2  (and/3 = 1) for 
2n + 1 states (2~- periodicity). 

The behavior of the eigenvalues as a function of q, well documented in the 
literature [27, 28], is very clearly exhibited by a semiclassical analysis [12]. 

Following [29], it is possible to obtain, by an extended WKB procedure, a 
quantization rule; this has been studied in detail recently [12]. It has been found 
that the approach is useful not only for the approximate computation of eigen- 
values, but also for describing most qualitative features of the transitions between 
modes as a function of q- - the  behavior of the allowed and forbidden regions 
for the eigenvalues (see Fig. 2) illustrates these features. The next section focuses 
on the localization of  mode transitions in particular. 

3.3. The P matrix and the ridge effect 

As shown in Fig. 2 and in several figures in books that describe the properties 
of Mathieu functions [26-28], the variation of the eigenvalues as a function of 
q show an abrupt change in character as they go through a line corresponding 
to 2q, which is classically the locus of separatrix trajectories. This is perhaps the 
simplest manifestation of the ridge effect, and, according to the nomencla.ture 
now well established in atomic physics [16, 17] and in chemical reaction theory 
[21, 30-33], 2q is identified as the ridge line (and - 2 q  is the valley bottom line) 
for the physical applications of these results. 

In typical problems, q is the slowly varying variable in an adiabatic treatment, 
but the fast variables fail to be so at the ridge. (For the Hrnon-Hei les  potential, 
q is related to a slow varying radial variable p [see Sect. 3.4]). Nonadiabaticity, 
i.e. the possibility of transition between states as q varies, is measured by the 
matrix P (Eq. 6) which explicitly has elements 

P~,(q) = Y~(o~, q) Y~, (o~, q) da. (17) 

This matrix is the analogue of the one introduced by Smith [34] for the treatment 
of nonadiabatic (diabatic) couplings in atomic collisions. It is familiar also in 
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z ' l _ ~ ~ , ~ / b  . . . .  ~ P 

~ = ,  0.15 

| 2O V / , , ,  

o 10 20 3o q o 

0.05 

~~2 -a2 -a 3 

10 20 30q 

Fig. 2. Some eigenvalues of the Mathieu equation, as a function of the parameter q, are reported on 
the left together with the ridge line 2q and the valley bottom line -2q (dash-dotted). Eigenvalues 
corresponding to /3 = 2/3 and 4/3 are shown by dotted lines, Allowed regions for eigenvalues are 
hatched. The right-hand side shows elements of the P matrix as a function of q 

molecular structure problems, where it indicates local breakdowns of the Born- 
Oppenheimer  approximation.  Within the hyperspherical formalism [17], it has 
been studied in the three-body Coulomb problem [ 16, 35] and in chemical reaction 
theory [30-33]. Also, from Eq. (6) 

f7 P~,(q)=(A~-A~,) -1 2Y~(a,q) cos2o~Y~,(a,q)da. (18) 

It  is then possible to show, from properties of  Mathieu functions Y~ [26], that, 
for q=O,  

P~,(0) = (u 2 -  b't2)--l~[~,_v,[, 1" 

The actual computat ion of  the P matrix was performed using the matrices T of 
the coefficients t2r,~ of  the diabatic expansion in Eq. (17). From Eq. (17), which 
in matrix notation becomes (see also Eq. (8)) 

d 
P(q) = T(q) ~q T(q), (19) 

we obtain P from computed T by diagonalization at two close q values: 

P(q) = e-l[T(q)r(q + e) - 1], (20) 

where e is a small number.  From Eq. (18) we have, after some manipulation, 
the alternative formula 

P~,(q)=[A~(q)-A~,(q)]-'[7"(q) ~T(q ) ]~v ,  (21) 

where dV~,/dq is simply 81~_~,1,1. This formula has the advantage of requiring a 
single diagonalization at each q, and therefore becomes more convenient than 
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Eq. (20) as the size of the secular problem increases. The left-hand side of Fig. 
2 shows some computed P-matrix elements: maxima at the ridge, to be expected 
from the corresponding minima in the eigenvalue differences (Eq. (21)) and other 
general properties, are clearly displayed in Fig. 2. 

We conclude by commenting briefly on the role of sequences of avoided crossings 
along the ridge, and on the related question of whether analytic continuation 
would reveal true crossings for complex values of q. Recent results [36] on the 
analytic continuation of the eigenvalues of the Mathieu equation are motivated 
by the fact that their crossings in the complex q-plane are related to the conver- 
gence radii of perturbation expansions. Therefore, it is not surprising to find that 
there is a correspondence between real parts of complex crossings, as listed in 
[36], and positions of the maxima in elements of the matrix P as defined in this 
work (see also [12]). 

Actually, the semiclassical formulas discussed in [12] (see the previous section), 
although valid only asymptotically, are in a form which appears to be suitable 
for extensions in the complex q-plane. It would be interesting to investigate this 
aspect further, since analytic continuation plays a role in theories of nonadiabatic 
transitions [37]. This role which has not been firmly assessed until now because 
in actual problems the analytic structure of numerically generated eigenvalues is 
poorly understood [38]. 

3.4. Quantum modes of anharmonically coupled oscillators 

As anticipated, the preceding analysis of the pendulum quantum modes can be 
immediately used to provide the analytical adiabatic representation of the two 
dimensional (Hrnon-Heiles) model for coupled oscillators, conveniently written 
in polar coordinates as in Eq. (2). By relating the polar variable p and the 
parameter q, 

4 5 
q = ~-~ Ap , (22a) 

and the angular variable 0 with the angle a of Mathieu equation, 

2a = 30 + m (22b) 

Eq. (13) becomes Eq. (15). Therefore, the adiabatic potential energy curves e~(p) 
are obtained from Mathieu eigenvalues A~(q) according to the formula 

9 
~(p)  = 8p----~ A~(q) +�89 (23) 

The elements of the nonadiabatic coupling matrices are likewise related: 

dq 20 
P~,(p) = ~p P~,(q) = -~ Ap4p,,u,(q). (24) 

Figures 3-5 are obtained from these formulas using computed eigenvalues and 
eigenvectors of Mathieu equation. 

A useful aspect of this approach is to provide a classification scheme for levels. 
When A = 0 (the simple isotropic oscillator) a good quantum number exists, and 
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it is designated by +l in [4]. For finite )t the potential belongs to the C3v symmetry 
group and the wavefunctions are classified according to its irreducible representa- 
tions ~1,  ~2 and g. Mathieu functions ce2n and se2, behave as ~r and ~12 
respectively under the C3~ symmetry operations. Their eigenvalues are labelled 
as A2, and B2n+2, where n = 0, 1, 2, . . .  (Fig. 2), they have a periodicity of ~-, and 
correspond to /3 = 0. The g representation is induced by Mathieu functions of 
fractional order ce2,+t3 and se2,+t3, and the corresponding doubly degenerate 
eigenvalues will be designated as A2,+t3. For this symmetry/3 can assume only 
the values 2/3 and 4/3, and in order that the proper boundary conditions are 
satisfied, the functions will have periodicities 37r and 3~r/2. Therefore, the levels 
supported by each adiabatic curve will be conveniently labelled by both the 
proper index of corresponding Mathieu functions 2n +/3, and by a progressive 
number v = 0, 1, 2 , . . . .  The Mathieu index is related to I by Ill = 3n +/3/2  and in 
the isotropic oscillator limit (a = 0) the energy levels are given by the formula 
2v+l+lll. 
As illustrated in Fig. 3, failures of the adiabatic picture, which can be measured 
from the elements of the matrix for nonadiabatic coupling P, occur at the ridge. 
The correlation between regular modes of classical investigations and the quantum 
mechanical states which are localized above the ridge has already been pointed 
out [5]. In our picture, quantum mechanical delocalization of the wavefunction 
is a process which is favored by a coupling between the adiabatic eigenvalues in 
the proximity of the ridge, where a sequence of level interactions shows up, and 
corresponds to maxima in the P matrix. These features should be discussed 
within the framework of the theory of nonadiabatic interactions, and a striking 
similarity is apparent between these aspects and the spectroscopic level perturba- 
tion for diatomic molecules [40a]. Actually, our current experience suggests that 
the semiclassical techniques introduced in such a context are also extremely 
fruitful here. 

An adiabatic approximation (i.e. a single term in expansion (1)) is not only 
qualitatively justifiable for characterizing the nature of quantum states far from 
ridge, but has also been found to be excellent for quantitative semiclassical 
quantization [40b]. For the lowest two states of ~g2 symmetry in Fig. 3, we obtain 
values of 3.9837 and 5.8840 by one-dimensional WKB (which is essentially a 
Bohr-Sommerfeld rule in this case), which may be compared with the exact 
values of 3.9858 and 5.8815 respectively; this is significantly better than any 
previous semiclassical recipe [41]. However the procedure will fail for higher 
states when nonadiabatic effects associated with the ridge come into play and 
invalidate the assumption of separability. 

Figure 4, which reports similar results for the g symmetry, focuses attention on 
a particularly interesting type of avoided crossings, due to the interaction between 
almost degenerate levels, that is supported by the adiabatic curves. This 
phenomenon leads to much more pronounced delocalization of the wavefunctions 
because of the strong mutual perturbation of the levels, and is strongly dependent 
on the parameter A, which measures the strength of the coupling between the 
oscillators. Therefore, it is relevant to extended discussions [41, 42] of the role 
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Fig. 3. a ~r b ~2. For the H6non-Heiles potential with A = 8 0  - 1 / 2  (Eq. 2): Upper broken Curve, 
ridge profile (0= ~r/3, It, 5~'/3); lower broken curve, valley bottom profile (0 =0,2~'/3,4~r/3)), 
adiabatic potential energy curves e~(p) (Eq. 23) and corresponding nonadiabatic coupling matrix 
elements P~v(P) (Eq. 24) as a function of radial coordinate p for ~1 and ~2 symmetry. Positions of 
levels indicated by continuous segments for those identified as quasiperiodic [39] and by dotted 
segments for those not identified as quasiperiodic 

of  avoided crossings as a function of the parameter  A. In the present approach,  
such avoided crossings, earlier noted by Percival [43], to be a road to quantum 
chaos, are seen to arise when, because of the increasing importance of  anharmon- 
icity for levels with high v quantum numbers, high v levels of  lower curves enter 
into accidental resonance with low v levels of  upper  curves. This phenomenon,  
which can be related to similar effects in molecular spectroscopy [42], leads to 
strong level repulsion [42]. For the model considered here, this phenomenon 
happens once in the neighborhood of A = 80 -1/2 = 0.118 (Fig. 4). 

4. Semiclassical analysis of  resonances 

4.1. The quantum resonance theory o f  unimolecular reactions 

The previous analysis is of  interest not only for general mode transition problems, 
but also for providing a useful model for unimolecular reaction theory. Consider 
again the potential given by Eqs. (1) and (2), and illustrated in Fig. 1. I f  its 
behavior is examined at large p values, it is seen that it has three symmetric 
saddles of  height (6A2) -1 at p = A -1, and eventually goes to minus infinity. 
Therefore all the states which it supports are actually metastable, and they will 
eventually decay by quantum mechanical tunneling: In other words, they are 
typical quantum mechanical resonances, to which we may associate a width F 
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Fig. 4. Adiabatic curves ~(p) ,  Eq. (23), for the e symmetry of H6non-Heiles potential (Eq. 2) for 
k close to 80 -1/2= 0.1118. Slight changes in k mainly affect the large p region: for example, the 
curves labelled as a, b, and c show how the 2/3 state changes for k =0.110, 0.112, 0.114. The 
corresponding v = 7 level varies as in inset, and thus would cross the u = 2 level of the 20/3 state, 
which is practically unaffected by a change ink [42] (dashed curves): Actually, the crossing is avoided 
and the levels behave as the continuous curves 1 and 2 [42] 
The correspondence with classical chaos and N (nonperiodic) quantum modes is then with strongly 
delocalized wavefunetions described by a superposition of modes nonadiabatically coupled in the 
ridge region 

Fig. 5. Behavior, at larger p, of some of the curves in Fig. 4. Dotted continuous and dashed lines 
indicate states designated as QI, Qn and N, respectively in [5] (see also [39]) 

and  a lifetime ~-= hF.  This model  has already been  considered [10, 11] for 

un imolecu la r  react ion theory,  where the resonance  lifetime is most  na tura l ly  
related to the inverse of  the un imo la r  rate constants  k = ~.-1 (see also [13]). 

In  a search for mode specificity in resonances ,  we extend the previous analysis 
to larger p values, ob ta in ing  for the E symmetry,  for example,  the curves depicted 
in  Fig. 5. Also shown in Fig. 5 are some levels considered in [11], and  their  
classification in terms of Qz, QH and  N states [39] is also indicated.  Bai et al. 
[ 11] find s t rong mode  specificity for this system: The QII states show the largest 
un imolecu la r  rate constants ,  the QI states the smallest,  and  the N states show 
an  in termedia te  behavior .  (Here, as often [10, 11], nonspecif ici ty means  depen-  
dence on energy only;  it is assumed to be an ind ica t ion  of full energy randomiz-  
a t ion in the molecules  and  therefore a good measure of the appropr ia teness  of  

statistical arguments . )  

Figure 5 shows that the results of  [5] can be quali tat ively unders tood  by consider-  
ing again the ridge effect; in  pa~xtcular, it is apparen t  tlaat Q~x states, being 
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characterized by higher vibrational numbers of lower curves, have their outer 
turning points well beyond the ridge and may therefore undergo extensive 
nonadiabatic transitions to the lowest curve, from which tunneling to dissociation 
is clearly easier. Conversely, Qt states are confined inside the ridge and thus 
present the lowest decomposition rates. The N states, for which the outer turning 
point is close to the ridge, clearly have strong coupling between adiabatic states, 
and the associated lifetimes are intermediate between the extremes. 

A quantitative semiclassical analysis of these effects for this model and similar 
ones, in particular for a recent model for the reaction CH20-> CO--> H 2 [10, 44], 
is reported elsewhere [13]. The two-dimensional model surface has C2~ symmetry. 
This analysis is based on a well known semiclassical formalism for resonance 
positions and widths [45]. It leads to quantitative agreement with the RRKM 
theory in the complete randomization hypothesis and it points out the role of 
ridge effects for such a randomization. The conditions for mode specificity are 
also analyzed; an important aspect of this approach is that mode specificity due 
to symmetries in the transition state [46] arises in a natural way through the 
group theoretical labelling of the Mathieu functions outlined in the previous 
section. 

4.2. Resonance widths in the adiabatic limit 

As illustrated in Figs. 1 and 4, adiabatic states as a function of p exhibit a well 
and a barrier, and nonadiabatic couplings between states are localized around 
the ridge profile. Semiclassically [14] the probability of tunneling through a 
barrier of height E~ and complex barrier frequency iw* for the v-th adiabatic 
state e(v--O, 1 ,2 , . . . )  is 

p,,(E) = exp [27r(E - E,.)/h~*~, (25) 

where E is the energy. From asymptotic properties of Mathieu eingenvalues 
[26, 28] in this case we have hoJ* = 1, and the adiabatic thresholds (barrier heights) 
are E~ = (6A2)-1+ (v + 1/2)v~. Symmetry enters through v: symmetry states ~1,  
or d2 correspond to even and add v respectively, while any v is allowed for the 
degenerate states g. In particular, the lowest adiabatic barriers for ~1 and g 
symmetries both correspond to v = 0. 

In the adiabatic limit, resonance widths may be obtained by a one channel formula 
[13]: 

F~(E) - hto~[(1 "Jrpv) -1/2-  1] 
2~r[(1 +p~)-1/2+ 1] ' (26) 

where for the frequency at the bottom of the adiabatic wells we can use the 
estimate hto~ = 2, again exploiting properties of Mathieu eigenvalues [26, 28]. 

Alternatively the same ingredients can be inserted in a RRKM type of  formula, 
corrected for tunneling according to Miller [9, 10, 13]: 

F~(E) = (2~(E/m)(1  + p ~ ) ] - i  (27) 
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where E/m is our result (see Figs. 2-5) for the density of states in the neighbor- 
hood of  total energy E. The symmetry factor m is four for classes M1 and Me, 
and two for ~ (in [10] m was taken to be three for all classes, so this specific 
symmetry dependence was lost). 

Results from both formulas are shown in Fig. 6 for A2=0.02, and comparison 
with the exact values [10, 11] available for this system indicates that both repro- 
duce magnitudes and trends. Similar agreement was found for the values 0.03 
and 0.04 (also considered in [10]); the results are not reported for brevity. 

The present analysis stresses the role of tunneling under adiabatic saddles whose 
characteristics depend on symmetry in a way which our approach exploits most 
simply. In systems such as these, exhibiting a relatively small density of states, 
the difference between preexponential factors in the two formulas does not lead 
to significant differences in calculated widths. Also, fluctuations around the 
predicted average behavior are within numerical error in these cases. Indeed, 
wider fluctuations were found [11] for h2=0.0125, a case where the density of 
states is higher (see Figs. 3-5 and previous section). Such fluctuations correlate 
with the regularity of  states in a way that our adiabatic analysis explains qualita- 
tively (see Sect. 4.1, [47]); however, the explicit introduction of the nonadiabatic- 
ity associated with the ridge effect is required to account quantitatively for these 
fluctuations. Their origin is rooted in the mechanism for the redistribution of 
energy among modes, which is not described at the adiabatic limit considered 
here; more elaborate models are required, such as Miller's semiclassical perturba- 
tion-infinite order sudden approximation [48], or, more simply, our sudden limit 
formula [13]. 

I I I I I I I 1 i I .  I I  

- ~4 - ~ / ~ ; "  I L I I I I I I I t -  
o 2 4 6 8 10 

E n e r ~ g  

Fig. 6. H6non-Hei les ,  Az=0 .02 .  Resonance widths F~(E)  ( v = 0  for M 1 and ~, v =  1 for M2) in the 
adiabatic limit (Eq. (26), con t inuous  curves )  and RRKM (Eq. (27), d a s h e d  curves,  labelled by m = 4  
for M1 and M2, and m = 2  for g).  D o t s  and tr iangles  are the exact results from [10] for M L and M e 
symmetries and from [11] for ~ symmetry 
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5. Concluding remarks 

The adiabatic representation in radial polar coordinates can be formulated for 
the H6non-Heiles model potential by using analytical properties of Mathieu 
functions. Qualitative properties of modes of anharmonically coupled oscillators 
are made especially transparent by this analysis. The connection between the 
quasiperiodic and chaotic trajectories of classical mechanics and the regular and 
irregular quantum modes is interpreted in terms of the characteristics of adiabatic 
curves (Figs. 3-5). Nonadiabatic coupling, which is strongest at ridges in the 
potential, is characterized as a source of irregularity. 

The short wave asymptotic nature of this procedure can be proven following, for 
example, [49]. Therefore under semiclassical conditions it is particularly con- 
venient to exploit the quasiseparability of a variable. For problems of higher 
dimensionality, a strategy involving a hierarchy of successive approximate separ- 
ations can be devised (see, e.g., [50]). 

Appendix: The H~non-Heiles potential and the elliptic umbilic catastrophe 

It is interesting to note the connection between the H6non-Heiles potential 
considered in this paper (Eq. (1), Fig. 1) and the elliptic umbilic catastrophe 
function D_4 (x, y; a, b, c) [2, 51], where x, y are the Cartesian coordinates and 
a, b, c are the control parameters: 

V(x,  y; ,~ ) = AD_4(x, y; (2A) -1, 0, 0), (A1) 

i.e. a--(2A) -1, b = 0 ,  c=0 .  

Catastrophe theory classifies functions exhibiting topologically canonical 
features. Its use in quantum mechanic~ has many facets; typically it provides an 
elegant classification [52] of canonical integrals which describe interference and 
diffraction effects in wave mechanics, in analogy to the corresponding effects of 
wave optics [53]. 

Here we are pointing out a different application, namely the study of the time- 
independent mechanics for potentials which are isomorphic to catastrophe func- 
tions. Because of the canonical nature of the latter, it can be argued that such a 
study, when carried out systematically, will provide a full qualitative description 
of quantum mechanical behavior for a wide variety of problems. Moreover, an 
important technique for effective solution of the time independent Schr6dinger 
equation in the semiclassical (short wave) limit is to provide solutions to canonical 
models which exhibit the same structure (e.g. distribution of turning points) as 
the problem at hand and then to provide a mapping procedure (e.g. matching 
of phase integrals). This asymptotic technique of reference equations [54] is well 
founded in one dimensional problems, where it is a generalization of the WKB 
method to obtain scattering phase shifts, and of Bohr-Sommerfeld quantization 
to obtain bound states. Canonical reference equations are Airy and Weber 
differential equations. They allow the full analytical solution of the related Stokes 
phenomenon for the uniform asymptotic representation of one and two turning 
point problems respectively. Similarly a study of the fold function (the simplest 
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catastrophe) provides the canonical form for three turning point problems and 
therefore the description of resonance scattering. Since the solutions of the 
corresponding SchriSdinger equation, which involve a cubic coefficient [55], are 
only known in regions away from the fold catastrophe (transition from one to 
three turning points) a reliable analysis is available only in limiting cases. 

An analysis of quantum mechanics for the cusp-like potential function (four 
turning points) has been presented recently [56]; it can be shown [57] that wave 
mechanics avoids the catastrophe, namely positions of bound states vary smoothly 
across the transition from a single well (two turning points) to two wells (four 
turning points). This is a further example of how quantum mechanics behaves 
well when classical mechanics has trajectories which are sharp separatrices 
between modes (see Sect. 2.2 for the pendulum motion). 

For two-dimensional extensions, the simplest are the umbilic catastrophe func- 
tions, still to be studied from this viewpoint. However, the function dual to D-4, 

D+4(x , y; a, b, c) = x2yq-~y3q - a(x2+yZ)q - bx+ cy (A2) 

(for c = b = 0 sometimes known as the Anti-H6non-Heiles potential [58]), under 
the change of variables 

1 1 
x = ~ ( X + Y )  and y = ~ ( X - Y )  

transforms into the sum of two cubits in X and Y. Therefore the corresponding 
potential allows exact separation and its study reduces to that of two separate 
cusp functions. 

In this vein, the present study (and all the related ones on H6non-Heiles coupled 
oscillators) are steps towards the characterization of the elliptic umbilic topology 
for potential energy surfaces (such as for the interaction of three atoms, as pointed 
out recently [8]). Specifically, we have provided in this paper an analysis for the 
quantum mechanical modes away from the catastrophe point a = 0 (or h ~ co), 
and in particular we have considered positive values for the control parameter 
(a or A) in a range where the topological structure (three saddles and one 
minimum) is preserved. 
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